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Abstract

We stud- the asymptotic performance of linear predictors of continuous-

time stationary processes from observations at n sampling instants on a fixed

observation interval. We consider both optimal and simpler choices of predict-

or coefficients; uniform sampling, as well as nonuniform sampling tailored to

the statistics of the process under prediction. We concentrate on stationary

processes with rational spectral densities and obtain the asymptotic perform-

ance for cases with no and with one quadratic-mean derivative. The anaiytical

results are supplemented by numerical examples depicting small and large sample ,

size performance.
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• .I. INTRODUCTION

A continuous-time stationary process is to be predicted linearly from ob-

servations at a finite number of sampling instants from a fixed observation

interval. What is the best location of the sampling points, for fixed sample

size or asymptotically as the sample size tends to infinity? At how many

points should the process be sampled for the predictor to achieve a specified

mean square prediction error? If the process is sampled uniformly, what should i
the sampling rate be for a desirable predictor performance, measured in mean

square error? These questions are answered by studying the performance of

discrete-time linear predictors as the sample size tends to infinity.

We consider uniform sampling as well as nonuniform sampling, e.g. at fixed

quantiles of a probability density over the observation interval. We are

strongly interested in the performance of uniform sampling, but we would also

like to know whether appropriately chosen nonuniform sampling may result in ap-

preciable improvement of performance. We consider optimal and certain suboptimal

linear predictors. The optimal predictors require the inversion of an nx n ..

matrix for each sample size n. The suboptimal predictors we use, require the

solution of an integral equation, but then the choice of predictor coefficients

for each sample size is very simple.

We concentrate on stationary processes with rational spectral density.

When the process has no quadratic-mean derivative, both the optimal and sub- I__-
-2

optimal predictors have the same rate n and the same asymptotic constant,

which depends on the sampling design. This allows us to check whether the

asymptotically optimal sampling design Is uniform or nonuniform, and, in the 1_

0
latter case, to compare itq performance with that of uniform sampling. The
smnalI siml'1, performance ofi uniform verSUs Totturt iform sainp ino, and of optimal

versus ,suhoptim:il predictor, i,; ilhi-,tr-1,, by specitic numericral examples. ,
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We next consider the case where the process has exactly one quadratic-mean

derivative. When the suboptimal predictor is used, uniform sampling has rate

-t -4
n while nonuniform sampling schemes can be designed with rate n . This s

striking discrepancy in the rate of convergence is due to the presence of de-

rivatives of delta functions in the continuous-time linear predictor filter.

The asymptotic performance of the optimal predictor is an open question at

present. In this case, the comparison in small sample performance and in asymp-

totics of optimal versus suboptimal predictors is done via specific numerical

examples.

In the context of regression problems, sampling designs were considered by

Sacks and Ylvisaker [3]-[5]. Sampling designs for suboptimal integral estimators

and detectors were considered by Schoenfelder [61 and by Cambanis and Masry [1],

respectively. The current paper considers sampling designs in the context of

prediction of stationary processes and provides new analytical results, extending

the earlier works [11,[6], for processes with one quadratic-mean derivative.

The organization of the paper is as follows. The formulation of the problem

is given in Section II. Theoretical and numerical results for processes having

no quadratic-mean derivative are presented in subsection A of Section II. The

corresponding results for processes with one quadratic-mean derivative are given

in subsection B of Section II. The proof of the asymptotic performance for pro-

cesses with one quadratic-mean derivative is delegated to the Appendix.

I-----

V..+

. .•. . . .
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II. PERFORMANCE OF DISCRETE-TIME PREDICTORS

We consider a stationary process X = {X(t), -< t<o} with mean zero and

covariance function R(t). We want to predict linearly the value of the process

at time s>T from n observations of the process taken at the sampling instants

D = ft from the interval I = [-T,T], namely from the observations {X(t ) I.n
k k 1 k k=l*

The linear predictor XD(S) has the form

n
XD(S) = CD kX(tk) = c'X (2.1)

k= I

where the row vectors c' and are defined by ca = (cD,..., cD nd

(cD,1) D 1 Dn

X = (X(t ..... X(t )). Our goal is to choose the n sampling points D and the

predictor coefficients c so that the resulting mean-square prediction error

eD (s) = E[X(s) XD(s)] = R(O) - 2c' R (s) + c' R c
DD -D -D D2D

should be as small as possible for fixed sample size n or asymptotically as n

tends to infinity. Here R'(s) is the row vector (R(s-t 1 ) ... R(s-t )) and
_%n1 n

RD is the covariance matrix [R(tk-t)]
* -k j j,k=l"

For a specified seL of n sampling points D, a natural choice of predictor
coefficients D is the optimal cefficients (s)R for which the

linear predictor

XD(S) = R -(S)RD (2.2)

i thit pro L-ct ion of X(s) on the data space generated by {X(), I T D}, and the

2
corresponding minimum mean-square prediction error F(s) is iven bv

DI
n

°, -•
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62(s) E[X2 (s)] E[ (s)= R(O) - . (2.3)
£D~ = [ s I-I=%(S)RD RD,(s). 23

For a specified n point sampling design D, finding the optimal coefficients in-

th
volves inverting an nkn covariance matrix, and the weight c for the k ob-

Dk

servation X(t ) depends on aZ sampling points It = D. Simpler, non-k k kl

optimal, weights are naturally suggested by the form of the continuous data

predictor whenever it is known, and we discuss this next.

When the entire continuous record {X(T), TE I= [-T,T]} is available, we

denote the optimal linear mean-square error predictor of X(s) by Xl(s) and

its minimum mean-square error by

2 2
c E[X(s)- (s) = R(O) - E[l (s)X(s)]. (2.4)

For any discrete-time predictor X0 (s) (with or without optimal coefficients

cD) we have

e k E[X(s) -X (s)]2 E{[X(s)- X (s) I (s) 2XD(S)]2
D DTI

S2(s) + E[ (s) - D 2 (2.5)

A
where the cross term vanishes since the error X(s)- X (s) is orthogonal to

the space generated by the continuous data {X(), r I to which both X (s)

111d XD (s) h.ln. Thus the excess error of any discrete-time predictor is

; ivt,n hy

5. .L

ff•

e (S) - (s) ( (s)] (2.6)

D I D



and in particular the excess error of the optimal-coefficients discrete-time

predictor (2.2) is

2()- 2l(s) = E[XI (s)] - E[ (s)] (2.7)

D I I X

by the projection theorem.

Since the excess mean-square error (2.6) of every discrete-time predictor

is measured by how well the discrete-time predictor approximates the continuous

time predictor in mean-square, simple nonoptimal-coefficients discrete-time pre-

dictors can be obtained from the form of the continuous-time predictor whenever

the latter is known explicitly in the time domain. In particular when the pro-

cess X has a rational spectral density and has precisely k mean-square deriva-

tives, as we assume henceforth, then the optimal linear continuous-time predict-

or has the form [21

k T
A k (C) Mi
Xi(s) a ta-X (-T) +b X (T)} + fc(T)X( T)dT (2.8)

j =0 -T

where the coefficients {a.}, {b.} and the filter c(t) all depend on the time
J J

s at which the process is predicted; and when we wish to emphasize this depend-

ence we will write a.(s), b.(s), c(t,s). The values of {a.}, {b.1 and c(t) are
J J 1 J

obtained a,, the solutions of the linear integral equation

T

R(s- t) = f h(T)R(i -t)dT, It T, (2.9)

-T

with k

h(t) = M(){a.(J)(t +T) + b.(J)(t -T)} + c(t). (2.10)

J=0 I .-

p_ .
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The form (2.8) for the optimal continuous-time predictor suggests generating

nonoptimal-coefficients discrete-time predictors as follows. First the endpoints

+Tshould be included in the sampling design: -T = tI < t 2 <. ..<tn < t = T. Then to
1n n

obtain the discrete-data predictor from the continuous-data predictor

l (s), in the expression (2.8) of l(s): '

(i) replace each quadratic mean derivative X -- (+T), j= I,..., k, by its

natural approximation by means of the samples, e.g. replace X (T) by

[X(T)- X(t (T- t , and

n- I- fT
(ii) replace the integral c(T)X(T)dT by a Riemann-type approximation in

terms of its samples {c(t )X(t ),n
k k k=l"

The appropriate quadrature rule for the approximation of the integral depends

on the number k of quadratic-mean derivatives of the process and will be speci-

fied in the sequel.

Here, f, - simplicity, only the cases k = 0 and k= 1 will be discussed in

detal as they bring ouL all the salient features of the problem at hand.

I-_

. . ... ; .. ' . .. .- -;-. - - - " .. Q .. ~ . -i --. .. --. • " ". ;. - * ""
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A. No Quadratic-mean Derivatives (k=O0)

In this case the optimal continuous data predictor has the form

T
(s a X(-T) + b X(T) + fc(Tr)X(T)dT (2.11)

where the constants a,b and the filter c(T) are the solution of (2.9) with k=O0.

A.l. Optimal-Coefficients Predictors

When the opt imal -coef fic ient s discrete-data predictor %(s) of (2. 2) is used, the excess

mean-square error (2.7) can be written in the form

E k2) C 2(s) E[ s ()2 =if P f12
D I I Ers~\ D p

where f (t), Iti <T, is the function in the reproducing kernel Hilbert space
s

2
of the covarilance R, restricted to I-T,T) which corresponds to the random

variable (s):
T

T
f s(t E (sX~)]a= R~t + T) + b 0R(t -T+f c(F)R(t -T)dT,

and P denotes the projection on the space generated by {R(--t )1 n Thus
D) k k= 1

Lhu results In Sacks and Ylvisaker [3 , Theorem 3.1 and Remark 3.3] are applic-

abl 1e. Spec -if -allyII if (D 1" is a regular sequence of sampling designs
n T1=2

;cnei1ated by a continuous, positive density p(t) on [-'V.1], i.e., D ~t~
n n,k k=1

t

-T p~tdt n- n, n-2, (2.12)

n-1.

-rn .T. - -. . --- . - .- - .. .--- . . . -
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then the excess error (2.7) of the discrete-time predictor (2.2) satisfies

2 2 2 -T c2 (t's)
n 2[ (s)- C(S)] f 2' dt, (2.13)

D n I 12T p2t

as the sample size n-o, where r = R'(0-) - R'(O+) >0. It is seen from (2.13)

2
that the excess error decreases precisely at the rate 1/n and that the asymp-

totic constant depends on the correlation function R(t) of the process X via

the jump r of its derivative at zero as well as via the filter c(t,s)-cf. the

integral equation (2.9). The result of (2.13) is valid for any continuous and

positive density p(t) on [-T,T]. In particular for the uniform density

p(t) = - 1 (t), the sampling instants are equally spaced:
2T [-T,T]

= T[ 2 (k - 1 )  1i, k=1

n,k n-i

and (2.13) provides a precise result on the magnitude of the excess error:

2 2 rT2  2
n Cs)- (s) - c (t,s)dt

D3 (t)s "d
n -T

The case of equally-spaced sampling instants is not the best possible, however.

If the samplin!,, density p(t) is chosen so as to minimize the asymptotic con-

ttAnt in (2.13), i.e. (by H61der's inequality),

/3
p (t) - - 9 (_ ',tj < T, ( , 4

c (u,s) !'du

. htain from (2.12) a sequence fD*} of sampling design-; which is asvmptoticaillv
n

, I ii in the ;ense that [ 3 " gii

* * ** - -*
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2 2
D* (S) I(S

2 __ 2 + I- as n-
inf2 (S) - 2 (S)

D I

where the infimum is taken over all sampling designs of size n. In this case,

the excess mean-square error f or the opt imal1-coeFffi c ien t:s d iscr(et - t in predi1c t or

:.-w; 1.

sat isfies

2 2 2 -T 2/13 (2.15)
n [ D(S) S)- fC(s) (ts) dt} "".15

It is seen from (2.14) that the sampling density s(t) of the asymptotically Oil_

optimal sequence of designs depends explicitlv on the filter c(t,s) and thus on

the correlation function R(t) of the process X via (2.9). This is, of course,4

in sharp contrast to equally-spaced sampling. Furthermore, in general, the

optimal sampling density (t) depends on the time sat which prediction is

S]

required. As will be seen from the example at the end of this section, it could

hippen that the filter function c(ts) depends on the prediction time s in a

1 2[ED,(S)bt fom r~~) * { c(t,s) ! c/ O () nwhc daet} e optimal sapln de-

pt p(t) of (2.14) no longer depends on the prediction time s: p (t)= p(t)-

I i e fature. In the general case one can derive a sampling density

indemlenent of s, by averaging the isvmptotic constant in (2.13) with a

thet Ie ct ion W(s ref lect ing the prediction requirement as one moves

t rpontrt toservat ion interval [-Tm Fe

F(c(t ,s)w(s)ds) d
-T Vp_(t)

optimalhe th sa mplni ing deendsit v T e (t) which mpeimizes hi ci i veraged eo.-

1eq ire t i e sien1 im C1ni the is proport in fl to

h~pentht hefite fncionc~~s dpedsonth peditin im sina ,.r

S. . .toal .om cts =c-c() in wichcseteopi smlngdn
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21/

an6hsdesntdpn on s, with corresponding asymptotic constant for the

exccess prediction error 2j

T2 T_ (fc(t,u)w(u)du) 23d

which does, of course, depend on s.

A.2. Nonoptimal1 Predictors With Median Sampling,.

In this subsection we consider the performance of predictors XD(s) whose

coefficients cD are not optimal. As indicated earlier, such nonoptimal-coeffi-

c ients predictors can be obtainled by adiscrete-time approximation of the optimal continu-

* ous-time predictor which is now given by (2.11). A discrete-time approximation

to (2.11) is of the form

n-2 C(t)

XD (s aX(-T) + b X(T) + -'--'(2.16t)

0 n-2__ p(tk n,k

*for n !2, where the coefficients ao9b 0 and the function c(t) are those of the

optimal continuous-time predictor. Here the sampling inStants are

1) = -T,t,.., t 2  T) where the sampling points Itn~ t are

the medians of a regular sequence of designs generated by a positive and con-

tinuons sampl ing density p(t) on [-T,T), i.e., It0  n-2 asf

t

2i-I
2 n

* Note that in this jase the samplIing points, It ue for the discrete ap-

fT 
n, i 1

*proximat ion of the integral fT CTr)X(-)dT are all1 in thec of [-T,T].

if



* For example when p(t) W t we have
2T [-T,T]

2 i-n+l,-2 n-a3t =i T i1 n- n3
ni n-2 '

The mean-square prediction error is given by

22
e D (s) =EIX(s)- X D()]2

n n

2 2
-R(0)[l+a +b Ii-2a R(s +T) 2b- s-T + 2a0 b (T

2n-2 c(t )
- y nk R(s -t )-a R(T +t b - ( -tk

n-2 1 P(tfk n,k 0 n,k b0 R(- )]

1 n-2 n-2 c(t *)c(t )

+ ~ 2 ~ p (t .)p(t )~ n,j tn ,k (2.18)

The excess error of the discrete-time predictor (2. 16) is then precisely the error

in the integral approximation, i.e.,

2 T In-2 c(t )
V ) C -S E[f c~tXtdt 1- ~ -~

(s ~( ( ) n,k
n -T k=1 n,k

I or n -3. From the result of Schoenfelder 6] (see also Cambanis and Masry I I

wo have

2 2T '2
2 2 (t S)

n [e (S) f '& 1 - - " dt (2. 19)
D) 1 12T2M

[I~ i ,Where r =R' (0-) -R' (00 > 0. The rectangular rule of integral approxi-

*rntion wis used in (2.16) because among all Newton-Cotes formulae of order one,

it results in the smallest value of the asymptotic constant (2.19) as was -



• i

"iwi"
shown by Schoenfelder (6].

It is seen from (2.19) that the nonoptimal-coefficients predictors (2.16)

have the same asymptotic performance as the optimal-coefficients predictors (2.2).

All comments made earlier about asymptotically optimal sequences of designs and

optimal sampling densities p(t) are applicable here verbatim. For a small sample

size n one expects the optimal-coefficients discrete-time predictor (2.2) to have

a smaller excess error than that of the nonoptimal-coefficients predictor (2.16).

Concerning the ease of implementation, the optimal-coefficients predictors (2.2)

require the inversion of the covariance matrices [R(t - t n,)] , for each
n,k n,j n~j

sample size n, which i s not especially difficult to accomplish on a computer.

On the other hand, the nonoptimal-coefficients predictors (2.16) require the sol-

ution of the prediction integral equation (2.9) with k= 0 for the determination

of a,b 0 and c(t) in (2.16), which may be a more complex task, but is done once

regardless of the sample size n.

A.3 Example

We now illustrate by an example the performance of the optimal-coefficients

and nonoptimal-coefficients predictors in conjunction with uniform or asymptot-

ically optimal sampling schemes. We focus our attention on the performance for

finite sample size n,as the asymptotic performance is clear from (2.13) and

(2.19). In particular we obtain the improvement in performance that the asymp-

totically optimal sampling (with density p(t) of (2.14)) provides over the com-

mnonly used uniform sampling.

We :issume the process X has spectral density

3 2 2

A. ..-

; tid corre I at Loll f111Wt lt _ "
%
"

• . " . / ° . • . -. ., , ,



13

R(t) e111 ( (2.20)

* where ci,B> 0. Note that R(0)= 1 and that X has no quadratic-mean derivatives.

* When a=t X is first-order Markov so that the optimal continuous-time predictor

*of X(s), s>T, from the observations {X(T), TIJ T} uses only the data point

X(T), namely

A -r(s-T)
X(s) =e X(T),

and the question of sampling designs does not arise. Hence we shall assume

*x i in the following.

The optimal continuous-ttme predictor is of the form (2.11) with a0 lb0,K.

* and c(t) being the solution of the integral equation (2.9) with k=0. They

* can be found by the method in Rozanov 12)] and, after lengthy computations,

we have

-B3(s-T)a (s) =- (6YsT)e ,(2. 21a)
4

b 0 () = + S(T) 2 2(22b

3 2 d (s-T )
b 0(S,=() 11(T0 )(s T) 2 (e 2() (2 .21b) 1

44

- ~ __( T) e dAtT +c (s))m cd± (2.21cL)
d ()

(t +! )' (tT) )'e~~t+) (221d

+~ ~~ m .t +)+M" ( T

6 %~..
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.

2
The mean-square prediction error 62(s) for the optimal continuous-time predictor,

given by (2.4), can be computed explicitly to yield F.

2
l (s) 1-a (s)R(s+T) - b (s)R(s-T) - c 2(s)A(s) (2.22a)

where

cJs a B
A(s) 2e {(t+ )e [(l+Bs+-)sinh(o-+ )T - BTcosh(c_+ )T]

(2.22b)

- (c-)e-T [(l+Bs-B_)sinh(t- )T + BT cosh(x - )T]),

* and

B = (2.22c)
2 2

'-X

For the discrete-time predictor (2.2) with optimal coefficients and sample size

2
n, the mean-square error E (s) is given by (2.3), whereas for the nonoptimal-co-

n
efficfents discrete-time predictor (2.16) with sample size n the mean-square error .

(s) is given by (2.18).
n

In the following numerical results the observation interval is set to

[-1,1], i.e. 'r= I, and the parameter . of the correlation function R(t) is

set to = 1. After a preliminary investigation, the value of the parameter

. in the correlation function R(t) was set to (x= 15. The reasons for this

choice are as follows. When o.= I we have a first-order Markov process X for

which the continuous-time predictor with optimal coefficient uses only the

undpoint X(+ I) so that, in this case, the question of sampling designs for

prediction is not interesting. Thus we are interested in choosing ,xi 1. For

(" -t I numerical computations showed that the mean-square prediction errors,

(and s), for the ontimal continuous-time predictor and respectively

for the discrete-time predictor with optima] coefficients using only X(+l),

9•j,.'

. . . .. .
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are essentially identical so that the sampling design problem is atifn of no

interest. For .> I the numerical results showed that the difference between

E2(S) and C (s) becomes more pronounced as i Increases. For example for

D2  2

(= 5.2 we have c 1(2)= .44 and r D(2) = .48 so that the fractional error for " .

n= 2 is already too small to exhibit the performance of the design for dif-

ferent sample sizes n. For rx= 10 the corresponding numbers are c (2) = .38

2
and c (2)= .458. It is thus seen that we need to choose i much larger than

=l in order to deviate sufficiently from the Gauss-Markov case. We have

chosen cc=15 in order for the sampling design problem to be of interest.

A.3.1. Optimal-Coefficients Predictors

2
Figure 1 compares the error c I(s) of the continuous-time predictor with

2
the error c (s) of the discrete-time predictor with optimal coefficients and

equally spaced samples, for prediction lags s-TE [0,31. It is seen that

for a sample size n= 10, the two mean-square errors are very close. Note

that for very small and for very large prediction lags, the performance of

the two predictors should be very close even when the sample size is small

(n= 2) as expected intuitively, since for zero lag, the prediction error in

both cases is zero, and as the lig tends to infinity, the prediction error

approaches R(O) = 1.

Figure 2 provides a similar comparison when the discrete-time predictor

with optimal coefficients uses the asymptotically optimal sampling instants

(, regular sequence (2.12) generated by the sampling density' p(t) of (2.14)). . -

While in general p(t) of (2.1 depends on the prediction time s, leading to

Ilifferent 4amp ling instants for different values of s (cf. (2.12)), it is .

ecu from the dependence of c(t) on s in (2.21c) that for this example p(t)

p o

r4
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is proportional to

2. IF

p(t) (0+)2 e a(t+T) (_)2 e_--a(t+T) /3 rt T (2.23)

which is independent of s, so that the sampling instants {t )n generated

n,k k-lgeead

by p(t) via (2.12) are the same for all prediction times s>T. It is seen

from Figure 2 thdt with only n-=3 samples the performance of the discrete-

time predictor is already very close to that of the continuous-time predictor.

The improvement that the asymptotically optimal sampling provides over uniform b

sampling is illustrated in Figure 3, where the fractional error

2

2 ns) -I (2.24)
Cl(s) .

is plotted as a function of the sample size n, for both uniform and asymp-

totically optimal sampling. The dramatic improvement provided by asymptotic-

ally optimal sampling is readily apparent for moderate values of the prediction

lag s-T. For example for lag s-T=I, using n=3 samples, we have

2 .171 , for uniform sampling,
Y 3 ( 1 ) = [-

.076 , for asymptotically optimal sampling,

in improvement factor of 2.25, and for n = 5 samples, I-

2 .087 , for uniform sampling,
Y1) )

0026 , for asymptotically optimal sampling,

improvement factor of 33.4.

IN

. . . ...

. . . . . . . . . . . . . . . . . . . . . . ..,. ~
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A.3.2. Nonoptimal-Coefficients Predictors

For the discrete-time predictor (2.16) which uses nonoptimal coefficients

2
and wf*.se mean-square prediction error eD (s) is given by (2.18) it was found

n
that its performance with uniform sampling is exceptionallv bad. Specifically

even for n= 10 samples, the error exceeds R(0) = 1 for all lags s-TE (.1,31, and

equals 4.3 for lag s -T= 1. Matters are much worse for n= 2 samples where the

error equals 23.06 for lag s-T= 1. This behavior can be explained as follows:

The excess error for the nonoptimal-coefficients predictor (2.16) is preciselv due to the -'

approximation of the integral _Tc(t)X(t)dt by the sum in (2.16). Now for

the selected values of ( and 6, c(t) of (2 .21c) has most of its mass concentrated

near the right end point t = T= I. When uniform sampling points are used, only

for very large values of n there will be enough samples near the right end

point of the interval [-T,T] to provide a reasonable approximation for the

integral. This problem does not arise with predictors using uniform sampling

and optimal coefficients since in this case the coefficients {c I of the

predictor are the best possible and each cn, k depends on a7 sampling points

[t } - indeed even for n=2 samples the performance is quite good as seen
n,k -.

from Figure 1.

When asymptotically optimal sampling is used (cf. (2.23) and (2.17)) the

performance of the nonopt Imal-coefficlents predictor is quite reasonabl e. Thi i

because the mass of p(t) - which Is again independent of the pred ict ion t ime s - is -

concentrated near the right end point of the interval [-T,T], just like c(t,s),

:tnd thus the sampling instants {tn,kk=l2 generated by p(t) via (2.17) are also

c lustered around the end point T. Figure 4 provides a comparison with the

performance of the continuous-time predictor as a functian of prediction la'

I- •:

r

......................... -*.
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I

s-T. Note that when n= 5 samples are used, the performance of the discrete

and continuous time predictors is very close. The fractional error is plotted
IF

in Figure 5 as a function of the sample size n for various values of the pre-

diction lag s- T.

If we compare the performance of the optimal-coefficients and nonoptimal-

coefficients predictors when both use the (asymptotically optimal) sampling .

density p(t) of (2.23), we find that the optimal-coefficients predictor is

superior. For example for lag s -T I1 we have

n 2 3 5 8

Optimal predictor .25 .016 .0026 .00066
y2(1)

( Nonoptimal predictor 63.6 .28 .0163 .0026

Thus the optimal-coefficients predictor requires considerably fewer samples to

*ichievo a prescribed level of error.

L°

I 1 -

o

• "=r

NY

A!i~:
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B. Exactly One Quadratic-Mean Derivative (k=1)

In this case the optimal continuous-data predictor has the form

*=- :

T ~'
I (s) = a0X(-T) + b0X(T) + alX'(-T) + blX'(T) + f c(t)X(t)dt 

(2.25)-T

where a.,b. and c(t) are the solutions of the integral equation (2.9) with k = 1,

and thus depend on the time s of prediction, which is suppressed.

B.1 Optimal-Coefficients Predictors

When the optimal-coefficients discrete-data predictor is used, the excess mean-square

error can be written in the form If PDf 112 as when k=0, but now the func-- as whnk ,bt o h uc

tion f (t), Itl-<T, is of the form
'. S

T
f (t) R(t +T) +b R(t-T) -a R'(t +T) -b R'(t-T) +f c(T)R(t-T)d"
s 0 0 1)

--T

and the results of Sacks and Ylvisaker [ 3 ] are no longer applicable because

of the presence of derivatives of the covariance. Thus no precise rates of con- . ,:

vergence to zero of the excess error are available, and the subsequent results on non- L -

optimal-coeff Icients in sussection B.2 provide upper bounds for the optimal-coeffi-

cients nredictor. Some conjectures are also offered in subsection B.3.

B.2 Nonopt im-l-Coefficients Predictors

Using the trapezoidal rule in approximating the Intepral __c(t)X(t)dt_= fcX

in (2.25) by

... .-{------- X(t + .n k+1 t
n{ n- 2~ __t_ _nk p X tn+k=l 2 P(t,k n,k P(tn, k+l

wc obtain a simple nonoptimz-A-coefficients discrete-datr predictor of the form

Or

. -
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_________T_ X (T)-X (t nn-1)
XD Cs) a0X(-T) + b0X(T) + a1  z- +2 + 1 -t .:

n n, n, n--l
(2.26)

1 j1 c(-T) n- ct 1 c(T)
-X(-T) + n~k X(t )~ + ----- X(T))

n 2 p(T) k2pt ) nk 2pT
k=_ n,k

* where {D Iis a regular sequence of design-, generated by the cont iInuous and positilve

'ampl ing dens ity p(t) , i. e. the sampl ing po int s inD are -T t L < .. t n t T
nn,lI n, 2  nn- n,n

adare specified by (2.12). Denoting by A A the errors in the approxi-

mation of the quadratic-mean derivatives, i.e. AT,n= =X(-T) - [X(t 2) -X(-T)V/ (t 2 + T)

A V'(T) - [ X(T) - X:(t )I (T -t ), we can express as follows the excess
T,n n,n-l n,n-1

mean square error in view of (2.6), (2.25) and (2.26),

2 2 2 2 2 2
eD (s)-r (s) a E(A )+b E(A

D 1 -T,n 1 T ,n

+ 2a bE(A A )
1 1 -T,n T,n 

( . 7

+ 2E((a + b AT 1 (fcX I- )

+ E( fcX I n 2.

The asymnptotlc performance of each term is derived in the Appe~nd ix, assuiming 1)

in.1' c/1 are twice continuously differentiable, and this leads to

-S 2 (S) I C (s)[l + o(0)]
n

I
+ __22 s + 0~)

+- 3C 3(')[1 + o(1)]

+ 44')[] + o00)],
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as n , where each line In (2.28) shows the asymptotic performance of the

corresponding line in (2.27), and the constants C(s) are specified in the ap-.

pendix. Thus the overall slow rate n is due to the slow convergence of the

quadratic-mean derivative approximation, and we have (cf. (A.5)) -1

n[e (s) C (S)] C (S) = -- _ + --- } (2.29)
D I 3 (-T) p(T)
n

(3) (3)where n is the jump of the third derivative of R at zero: p K (0+) R (0-) >0. In par-

t icular, the slow rate n is the maximum possible when uniform sampling is employed.

It is clear from (2.27) and (2.28) that the integral approximation has a

-4much faster rate of convergence n. This substantial loss of rate convergence

can be averted by replacing in each n point sampling design D the points t n,2

4 4and t by (t +T) -T and T- (T- ) respectively. The resulting
n,n-l n,2 n,n-l

modified regular sequence of designs fD'} (which can no longer be uniform) has

excess error whose term by term asymptotic performance is described by

22 kC{(s:I

eD (S) - (S) = (s + o(l)1
n n 4"1

II
+ --ZC (s)[1 + o(1)

n (2.30)-"

n

+ _-C (s)[l + 0M()n

+ -i - (S ) 1 + c'(1) ]

-4
-4 .7

fn thic; case the rate of convergence is n and, as n+-

4 2 2 C (2. M')n [eD (S) - (s)] - (s) + C4(s)

n

* • " -.
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where (cf. (A.8), (A.18)) 2"
a1(s) b (s)

C'(s) +f +1
p (-T) p (T)F

C 4(s) = 20_ fp4( t +CS

and C(s) is given in (A.19) and depends on s only through c(+ T,s) and c'(+T,s),

and on p oniv through the boundary values p(+ T), p'(+T). Because of the depend-

ence of the asymptotic constant In (2.31) on the values of p and p' at the end-

points +T, its minimization with respect to p(t) is messy and perhaps not feasi-

ble in view of the continuity requirements on p. On the other hand, the part of

the asynptotic constant which depends onl p(t), Iti <T, i.e. fc2p 4, is minimized

when p(t) is proportional to jc(t s)12/5.

A further small Improvement can be achieved by bringing the modified

sampling points even slightly closer to the endpoints so as to cancel asymp-

toticallv the effect of the approximation of the quadratic-mean derivatives.

For instance if the modified sampling points are chosen by t" = (t + T) +  T
4+F-

t = T- (T- tn ) , > 0, then the resulting modified regular sequence of
n n,n-1

designs {D") has, of course, the same rate but smaller asymptotic constant:

4 2
n [e ,,(s) - s (s)] -" C (s). (2.32)

Dt 1 4n

I ' .x.- I e

Here the process X has the spectral density

5F 2 2
8J 

+

3t
C1
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and correlation function

R(t) = -It[+ 11t + ~ -2 -2 t2]  P--
3e 2 2 t'

where a,,> 0. Note that R(0)= 1 and that X has precisely one quadratic-mean

derivative. When a the processX is second-order Markov for which the opti-

ma! continuous-time predictor of X(s), s>T, from the observation {X(t), ItIK' ' "

uses only the data points X(T) and X'(T). Since the derivative X'(T) is not

part of the observation, the case o= 6 is still of some interest. However, we

shall consider the case av i in order to exhibit the performance of sampling

designs which provide data points inside the interval [-T,T].

The coefficients ao, b0 , a1 , bl, and c(t) in the optimal continuous-time

predictor (2.25) can be obtained as follows. From Rozanov [2 ] or Yaglom
_rX .' (X ,

7], it can be seen that c(t) is of the form c(t)=B e + B e and substi-

1 2

tuting h(t) of (2.10) with k= I in the integral equation (2.9), carrying out I

the integration, and equating the coefficients of t e ,=,1,2, on both

sides of (2.9) leads to a system of six equations in the unknowns aolb 0,al, ,BiYB

(the general expressions for ai,bi given in Rozanov [
2 ,p. 137] are incorrect; hence the

substitutionapproach taken here). After lengthy computations we find

2 2 3 2 -e(s-T)
a (s) = 6 ( (2 _ 2) (s- T) e

0 d (T)
6

(s) -ao(s)/(3 ),
a1  0

3 6 (T)  I ? 2 -:(s-T)
b h (s) = + :'(s-T) + , -

2d (T)

h ~ 1 21 d -- )- i ] (s-i') (8- _ -),,c r

2 3 3(t)
2d (T)

, a{ ( ,2-]-)
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where d and 6are defined in (2.21d-e).
m m

2
The mean square prediction error C ICs) for the optimal continuous-time pre-

dictor is gven by (2.4) and can be computed explicitly to yield

2
C I(s 1 a0 ~s+) b R~ -T)+a R' (s +T)+ b 1 R'(s-T) -c 3 (s)A(s)

where

A-s =2e 2zoff 2+ 2 s B2)
A~s) 2e (cc.--+3 e [(+ +T - 21B +[6+-ZB]s+B s )inh(+6n) T

-TQ3 + + 2Bs) cos +,A)TI

2-cixT 6 2+ 2 2B ] s2)- c )e [(1+-+ [T ]B + rB 1 + Bs sinh(6 - t)T

2B
-T6+ 2b-- + 213s) cosh(6-c) T]

2 2 2

B 2 2
3at +6I

and

2 -~t
R'(t) -C +t ( 362 + 3(2t - )t), t 0.

2 2
3ot +6

For the discrete-time predictor (2.2) with optimal coefficients and sample size

* n, the mean-square error u(s) is given by (2.3) whereas for the corresponding
D

n
Poedictor (2.26) with nonoptimal coefficients the mean-square error e Cs) is

D n
gziven by (2.27).

In the following numerical results the observation interval is set to

* 11,1, ie.,T= 1, and the parameter F-of the correlation function R(t) is

set t o I I. The behavior of 2s and F 2s (wi th uniform sampling) as a
D

n
f unc tion of r-, for a f ixed s, was investigated numericalIv. rcesutlts show that
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2 2 2
as cc increases both l (s) and cD (s) decrease with cD (s) decreasing at a

IDD
n n 2

slower rate. For example for s=1.2 and a= .l, 1.2, 9.2 the values of (s)

2are .64, .276, .074, respectively, whereas the values of E (s) are .797, .398,

.23 respectively. We have selected a moderate value of at= 2.5.

B.3.I Optimal-Coefficients Predictors

2
Figure 6 compares the error E (s) of the continuous-time predictor with the

I
2

error ED (s) of the discrete-time nredictor with optimal coefficients and
n 2

equally-spaced samples for prediction lags s-Tc [0,3]. It is seen that cD (s)
2D

approaches E (s), as n increases, rather slowly. In Figure 7 the fractional
I

error (cf. (2.24)) is plotted as a function of n with the lag s-T as parameter.

It is clear that the fractional error is fairly large even for a sample size

nK*n=10. "

In view of the analysis in Sections B.1 and B.2 we are led to believe that

2 2
the rate of convergence of ED (s)- E I(s) to zero is perhaps 1/n due to the

n
implicit aporoximation of the derivatives X'(+T) by linear combinations of

uniformly-spaced samples {X[2T(k-l)/(n-l) -T]}k I . It should be noted that

k= 1
fT In= '2~ )( I ]"[[

the approximation of the integral Tc(t)X(t)dt by kCn kX[ -)/(n -1) -TI

4
has a rate of convergence of at least 1/n

The numerical results can shed light on the rate of convergence. Suppose

that the asymptotic result is of the form"

k ' 2
n kc,2 (.R) - 2 (S)] K(s) (2. 33)

Dn

ii tor some (unknown) constants k and K(s). Then as n - c,

k 2 2n y (s) -, K(sE 2(s) = Q(s)-

L

* .* -.

* . .. .- .... ..
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k 2
In Figure 8 a plot of n y (s) is given, for lag s-T= 1.5, as a function of the

sample size n for possible values of k= 1,2,3,4. It is evident that when k=i, 1,

2
ny (s) approaches a constant fairly quickly, supporting our belief that the rate

of convergence in (2.33) in indeed I/n. We also conducted a mean-square fit

for k and Q(s) by minimizing

In
J~)= 2 k 2 o~2

) {n y(S (s) )
n=n.

with respect to k and Q(s). For the range of sample sizes n=15,..., 30

(n 15, n., 30) we found that the best fit is

k = 1.035

and r[0.118 for s-T = 1.0

K 2.35 for s-T = 1.5K(s)=

.848 for s-T = 2.0

.379 for s-T = 2.5 .

Interestingly, the best fit for k turned out to be independent of the 4 values

of s listed above. This result clearly supports the conjecture that the rate

of convergence of c2 (s)- C (S) is 1/n.
DI
nThe above slow rate of convergence can be dramatically improved if we modi-

fy the uniform sampling scheme t = T(2i -n -l)/(n- 1), i= I,..., n, by appro-

priatelv shifting t and t towards the end of the data interval [-T,T]Sn,2 n,n-2

so as so achieve a better approximation of the derivatives X'(T) and X'(-T).

S ppose, for example, we let

2T 4
t 9 = (--) _ -T ,

(2.3 4)

21' 4 i,t = ( 2T)-j

t n,n- n-i

. . . . . .- i .. i".- - ::.- _.;_i.. 2/ i _:) . -..:.. . . ; -, _ -- ._ --; . -- - _. _. _: - -. :. --..-- - .:- .. : -- * .'- .. . .



27

for n> 2, so that the approximation of the derivative X'(-T) by only two data

points X(tn, I) and X(tn,2) (and similarly for X'(T) by X(t n,n ) and X(t nn-1

achieves a rate of convergence of 1/n . We then expect the performance of the

discrete-time predictor with such a modified uniform sampling to improve

dramatically in comparison to uniform sampling. This turns out to be the

case: In Figure 9,c2 (s) is plotted as a function of the lag s-T for sample
D
n

sizes n=2,5 when this modified uniform sampling scheme (2.34) is used. It is

seen that with n= 5, the performance is already very close to that of the con-

tinuous-time predictor (contrast it with Figure 6 for uniform sampling). This

sharp improvement for the modified uniform sampling scheme can be seen more

2
clearly in Figure 10, where the fractional error y (s) is displayed as a func-

tion of n for 3 selected values of s; it is seen that the modified sampling

scheme with n = 7 outperforms the uniform sampling scheme with n = 30 by a

factor of about 10. For example, for lag s-T= 1.5, modified uniform sampling

-3
with only n= 7 gives a fractional error of 5.12 x10 , whereas uniform sampling

with n= 7 gives a fractional error of .109 and even when n= 30, we have a frac-

-2
tional error of 2.37x 10

With this modified uniform sampling we expect a rate of convergence of 1/n4,

but no such analytical result is yet available. Due to numerical instability in

the inversion of the covariance matrix RD when modified uniform sampling (2.34)

n
is used with n->7, we were unable to computationally verify this conjectured rate

of convergence.

B. 3.2. Nonoptimal-Coefficients Predictors

When rhe nonoptimal-coefficients predictor (2.26) is used with equally-spaced samples,

2the mean-square error eD (s) has precisely a rate of convergence equal to 1/n,

2 2by (2.29). Figure 11 compares eD (s) for n= 2,5,10, with c (S) of the optimal
D -I

n
continuous-time predictor. More interestingly Figure 12 provides a comparison p

t performance between the discrete-time pred ictor with opt i ml ,'ooff icient

.-..--, ,-" ..- ."-. -... ..- -".--.-. -, . ..- . . ' -. .. -. - -. .. * . -... . -. .
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and that with nonoptimal coefficients; here the fractional error is plotted

for each case as a function of the sample size n for 3 representative values

of the lag s-T. It is seen that the performance of the two predictors is

fairly close in this case with equal rate of convergence (1/n).

From (2.31) we know that by modifying the two sampling points t and
n,2

tnn_2 as in (2.34) we obtain a precise rate of convergence 1/n for the discrete-

time predictor with nonoptimal coefficients (2.26). The performance for finite

sample size n= 2,..., 30, is displayed in Figures 13-15. Figure 13 exhibits the
2 2

mean-square error eD (s) for n= 2,5,10, and C (s) of the optimal continuous-
n

time predictor. This should be compared with Figure 11 where uniform sampling

is employed. Such a comparison is more clearly displayed in Figure 14 from

which the dramatic reduction in the fractional error is evident (for a fixed

lag) under the modified uniform saupling scheme.

Finally one may wish to compare the performance of the two discrete-time

predictors, with optimal coefficients and with nonoptimal coefficients, (2.26), 5

both using the modified uniform sampling scheme. Such a comparison is given

in Figure 15 from which it is seen that for small sample size n! 7 the pre-

dictor with optimal coefficients significantly outperforms the one with non-

optimal coefficients. This is considerably more pronounced here under a modi-

fied uniform sampling than in Figure 12 under uniform sampling. One possible

explanation Is that the predictor with optimal coefficients does a much better

job in estimating the derivatives X'(+T) than the one with nonoptimal coeffi-

c'ients, implicitly using all data points instead of just two points as in (2.26).

W7

.................... .v.... ..

. . . .__ ~ ~~~~~ x~-~ -. -.- .
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APPENDIX

Here we derive the asymptotics of the terms on the right hand side of (2.27).

A. Approximation of Quadratic-mean Derivatives

For the mean-square error in the approximation of the quadratic-mean deriva-

tives (first line in (2.27)) we have

h

-R 0) [R 1 (0) -R 1 (h)] + -[R(0) -R(h)I
h

(2)+ 2 () 12 (3) 2-R 0) h[hR (0)+ R (G+) + o(h )

2 12 (2) 13 (3) 3
[=_h R (0) + h R(0+) +o(h)

h

2 (3)
i hR (0+) + o~h) (A.1)

where the right and left derivative corresponds to h positive and negative re- W_

* spectively.

For the cross correlation between the approximat~ons of the quadratic-mean

der ivat ives (second line in (2.27)) we have with w= u- vi0, h> 0, g >0,

(1) 1(1 1

(2) 1 (1) (1) 1 (1) (1)
--R (w)--R (w -g)-R (w)]- -R (w) + R (w -h)]I

hg
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1(2)1 2(3) 13 (4) 4F-jIf-hR (h)+- 1 R (w)'--h R (W)+0(h M1

+ 1[R() {-g +(g +h) h) + R ()-jg - (g +h) 2+ h 2 _

(4)R (w + 0(h + g ).(A. 2)

With u= T, v= -T, h n=T -t g~-l n=t n2+ T, and a regular sequence of de-

signs, it follows from the mean value theorem that

_ f p(t)dt p(v )(t 2 + T)

T

- f' p(tdt =p(u (T -t )~-
nnnnn-

where -T< vn< t n.2  t n~n 1 < un < T, and thus

ng~ nh .(A.4)n p(-T) n p(T)

Hence from (A.1) and (A.2) we obtain

nEA2 2 R 3 (0-) _ __

EATn 3-~ p(-T) -3p(-T)

(3)

nE(A 2) 2-4 (0+ (A.5)T ,n 3p(T) 3p(T)

2 R (2Tn E(A_ A ) - (Z
-T,n T,n 4p(-T)p(T)
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which establishes the first two lines in (2.28). Also when t and t are .

modified tonn-

n, +T) -T, ti T -(T -t )m(A.6)

tn2 (tn, n,n-l n,n-l

then

g 9 +T (t T)m, h =T -t' =(T -t
n tn2 n,2 n n,n-l n,n-l

and by (A.3),

m 1 M. 1(A7

n m n m
p (-T) p (T)

* so that

m 2 _____nEF(A- --T, n Pm(T

(A.8)

2m R (4)
"n2 E(A_ A R (2T)

-T,n T,n 4p m(-T)pm(T)

When m =4 we obtain the first two lines in (2.30) and when m -4 both rates

-4
are faster than n leading eventually to (2.32).
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B. Approximation of Integral

The integral approximation mean-square error can be written in the form 1

t t
T nn k+l '1

Elf c(t)X(t)dt -1 12= I. M.jtTPtPTdd

-T k,j-l tk tiI

A
Y. (A.9) *

k,j=1 l

wherej

M(tT) =ft)f(-T)R(t -T) -f(t)lf(t )R(t- t.)+ f(t~+ )R(t -t.~

-i f(Tr)[f(tk )R(T -t k)+ f(t kl)R(T -t k1

(A.10)

+ I[f(tk Mt )R(t - t) + f(t Mft )R(t -t )
4j k j k j+l k j+l

+ f(t k )f t )R(t k -1t )+f (t )fl t j )R(t -~lt )j, Jl

and f(t) =c(t)/p(t), and where n is dropped from t nkfor ease of notation.

From (2.12) we have by the mean value theorem

tk+l
n f p(tOdt =p(uk)A tk (A.11)

t k

whcre t k U ki t .+I In the following we will make use of the quantities

k+II

k-I-I
F f ( 1(t) 0 [f(tk + f(tk~ )])p(t)dt,

tk

tk+1

F = ft(t - f n ft )\n)P(Odt
m,k k 2 k+i k

tI.

7,*i
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m=1,2,3,4,5. Their asymptotics are found by Taylor expanding (fp)(t) and

p(t) about tk* Using - to denote equality up to higher order terms in At k9

we find

3
F G At for m= 0,1,2,
m,k 'p k

(A.12) .

m+1
F G At for m= 3,4,5,
m,k m k

where

0 12
G0 = j(f'P' -fp,

G = (fp' - 2f'p), (A.13)

1 2G, 1 P,

and in these expressions all functions are evaluated at some, possibly distinct,

point in [t ktk+l)

For the diagonal terms J in (A.9) we use the Taylor expansion of Rk,k ..

about zero,

R(T) R() 1 2(2) 1 3(3)
R( )= R() + R (0) + -gT K (1

where ;. is in between 0 and T. Since R does not have a third derivative at 0,

(3) (3)in fact R (0+) = -R (0-) = p/2>0, we need to keep track of whether the

intermediate point is positive or negative. After considerable algebra we

find that

J =R(O)F + R (2) [F- F + R (A.14)

k,k 0 ,k O[ 2 k Ok FI k 3,k

................................... _'... ".',_," ... _
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L

6
where the first two terms are of the order At kby (A.12), and the third term

involves the third order derivatives of R:

tk~

kl

(3 3 (3)
R-f RC3d p()fR() f Mf)(t)~ 2 (t- - R ( 4 f W f (t ) (t - tk3

3 (3) 3+

R (~3~)( M-f(tk )(tk~ -T) 3+ R ()fMtk Mtk )At 3

The intermediate points F to 6 are between 0 and t- tkt

respectively, hence, all positive, while is between 0 and t - T. Thus the

Iintegral of the first term should be done separately above and below the diagonal

*of the square (t k't ) I ) (t k't )+ while all other integrals can be evaluated

*directly on the entire square. Using mean value theorem to pull. the part of

(3)
the integrand involving R ,f and p out, and evaluating the resulting integral

we find

1 R(3) + (3)
RR (pos)fpfp 10 R (neg)fpfp(--I)
3,k 12100

(3) 1 (3 ) 1 (3)1
-R (pos)fpfp~- R (POS)fpfp~- R (pos)fpfp-L

-R (pos)fpfp + R 3 ffpp~ At k

where f and p are evaluated at points in (t k't ) arid R ()at points tending

to (0 with n whose sign is indicated. Hence R 3kis the dominant term in (A.14)

and using its expression above along with (A.11) we obtain

p.
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4 R (0+) R~3 (0-) R (0+i) + R 3 (0+) }d
kk,k 120 - 120 12 12 4 t

T
( 1R 3 () (3 R 3 (O_)] f Q dt r
120-T p Ct

iT 2
T20 Df 2 t) dt. (A. 15)

-Tp (t)

For the off-diagonal terms J1 ,i j, in (A.9), we can Taylor expand R
k ,

Aibout tk - ti #0 as far as it is necessary, as it is infinitely differentiablek
away from 0. We find that terms involving fifth and higher order derivatives

of R are of higher order in (Atk)Mt.) and after considerable algebra we have

ikj R(tk- t )[Fo kFO + RM1~(t tj )[Fl FO'j FO kFl,jI

kCtk ~ Okj +F k . -2l, ,k k

1 (3)
+-R - t )fF F -F F' +2F F -3 F

6 k tj 3,k 2,j 2,k 3, qlk 0,j 2,li

1 ()

+- 1 t (4) )[F F + F F' -4F F -4F F1j + 6F F .24R (k tj 0,k 4,j 4,k 0j l,k 3,j 3,k lj 2,k 2,j

+ higher order terms.

In fact, in view of (A.12), the terms Involving F 3kand F,"" are also of

3 3higher order, and all remaining terms are of the order At 1 At j Using (A.11)

and (A.12), (A.13), we find

4 I(in)
k~j 12 t#T m=O
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where

r 0o(t, ) A -0

PfP ' fyi f.p ppp

r (t,T) = f(t)(f')'(T) + (f)'(t)(T) - [(t) + (-)'(t)][ -(T) + (f)'(r)],

f f f f f f) ff
r3?(t,-[) = [ (t) + (T)'(+) (t) (T(t + ( )I ( )+

p p p P p P

f f
r4 (t,T) = (T)

Putting topther (A.15) and (A.16) we have

n -F(fcx- I f + 1 2() = (A.17)
p 12 2 ts .=O

rhe expression of the asymptotic constant C4 C4 (s) can be simplified considera-

bly by integration by parts. For instance

r4  =T + fTR~~t-tL
f (4T(4) f t f t T 3f= r4 f dtfp(t)(f + f)dTR(4(t - r)fP(T) -7 -

t s -T P -T t P"""

" T

r dt (t) [-R (t -T)f-(T)] + [ , IT + (f + f)dTR (t T)( (T)}
-T P p T=-T T=t -T t P

T - R ( )  (3) ( t T f R(3) f(3 f .".|*

dt t -R(3 (0+) (t) -R ( t+T) (-T) -R (t - T) -(T) + R (3) )C-(t)
- p P P Pp-

( )f f

R ) t - ) () (T)dtdT
-T p

(3)()
+ j (t )[R ( (t 4 'F) (-T) - R (t -T) (T) dt

p p p ..

p p P, p

.r



,, + -.--.---- r -." - r-r ~ .r -.- r . r. - - -

37

The first term is of the same form as that coming from the diagonal terms.

Using repeated integration by parts on the remaining terms we obtain finally

2

c4 = 2 + c (A. 18)

p

where

2 f'j 2 f' 2 f'f'
12 C =R(O) [C)(-T) + (-) CT)] -R2)(T-T

p p p p

() f' f f f'f
+ 2R (2T)[(-T)(T) R-(0)(-) -T) + (L-19)

p p p p

and f =c/p.

It should be noted that as follows from the work of Sacks and Ylvisaker

[4,5] the first term on the right had side of (A.18) is the asymptotic con-

stant of the regular sequence of designs using optimal coefficients. Thus

our estimator I of the integral is not asymptotically optimal, its asymptotic
n

constant exceeding the least possible value by the amount C determined by

(A.19).

-

p.
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C. Cross Correlation Between quadratic-mean Derivative Approxima tion And

Integral Approximation

Putting AT x~(T) - X(T) -X(T- h )/h we have

t k+l n

E[A Tn(fcx-. I~ n Y f Ml,(t)p(t)dt k
T~ n k=l tk k=1

where

kh n

n

n

-i -(tk ){-R 1 (tk~ T) - L[R(t ~ -T) R(tk lT+h)IW,

and f =c/p. As in A of Appendix, h satisfies (A.7) with m = 1 or 4 or > 4
n

(1)
Since for each k, the argument of R and R in the expression of M4 k never

e vanishes In the interior of the interval, we can Taylor expand about t k- T

and regrouping terms we have

( R 2 ) 1 (3 1~3  2 1
C t T)hnFO R (t T)[thj +-F
k~~k k OhnOk 2 k n l,k

(4) 1 3 1 2 1
+R (t T)-F +- F

2 n k nl,k 4 n 2,k

+ higher order terms,

i.e., the coefficients of R(t - T), R t -T) vanish and those of R etc.,
k k

are of higher order in At .Then using (A.7), (A.12) and (A.13) we obtain
k*

I-
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n2mE[A (Jd(-I )]D
T,n n 24 p m(T)

where T

(2f' (3T (4) f ..

DfR (t -T) (-P(t)dt +JfR (t-T [LJ J)+()()]t+ t-T t

-T p-T p p -T I
and can be simplified by integration by parts to

D R (2 ) ~' 3 3(0) (-) (T) R (~2 )(-2T)(-(-T) + R ((-)-E(T) -R ()(-2T)--(-T).
p p p p

When m= 1 we obtain the third line in (2.28), when m= 4 we get the third line

in (2.30), and m> 4 helps lead to (2.32).
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